Open Systems

Definition
The chemical potential μ
Internal μ
External μ
Gravity
Magnetic
Gibbs factor and Gibbs sum
What determines N?

- Up to now (Ch. 1-3), we asked the following questions:
What determines N?

- Up to now (Ch. 1-3), we asked the following questions:
 - we have N particles fixed in place, or
What determines N?

- Up to now (Ch. 1-3), we asked the following questions:
 - we have N particles fixed in place, or
 - we have one particle ($N = 1$):
What determines N?

- Up to now (Ch. 1-3), we asked the following questions:
 - we have N particles fixed in place, or
 - we have one particle ($N = 1$):
 - What states s do they take?
What determines N?

- Up to now (Ch. 1-3), we asked the following questions:
 - we have N particles fixed in place, or
 - we have one particle ($N = 1$):
 - What states s do they take?
 - What are their average observables $<x>$?
What determines N?

- We also asked (Ch. 4):

 - The chemical potential μ
 - Internal μ
 - External μ
 - Gravity
 - Magnetic
 - Gibbs factor and Gibbs sum
What determines N?

- We also asked (Ch. 4):
 - How do waves get excited by τ in a volume L^3?
What determines N?

- We also asked (Ch. 4):
 - How do waves get excited by τ in a volume L^3?
 - Cavity EM modes (blackbody radiation)
What determines N?

- We also asked (Ch. 4):
 - How do waves get excited by τ in a volume L^3?
 - Cavity EM modes (blackbody radiation)
 - Elastic modes (lattice vibrations)
What determines \(N \)?

- We also asked (Ch. 4):
 - How do waves get excited by \(\tau \) in a volume \(L^3 \)?
 - Cavity EM modes (blackbody radiation)
 - Elastic modes (lattice vibrations)
 - Not very much like particles we know:
What determines N?

- We also asked (Ch. 4):
 - How do waves get excited by τ in a volume L^3?
 - Cavity EM modes (blackbody radiation)
 - Elastic modes (lattice vibrations)
 - Not very much like particles we know:
 - can occupy the same spot
What determines \(N \)?

- We also asked (Ch. 4):
 - How do waves get excited by \(\tau \) in a volume \(L^3 \)?
 - Cavity \(EM \) modes (blackbody radiation)
 - Elastic modes (lattice vibrations)
 - Not very much like particles we know:
 - can occupy the same spot
 - aren’t conserved
What determines N?

- We also asked (Ch. 4):
 - How do waves get excited by τ in a volume L^3?
 - Cavity EM modes (blackbody radiation)
 - Elastic modes (lattice vibrations)
 - Not very much like particles we know:
 - can occupy the same spot
 - aren’t conserved
 - Nevertheless, sort of like particles
What determines N?

- We also asked (Ch. 4):
 - How do waves get excited by τ in a volume L^3?
 - Cavity EM modes (blackbody radiation)
 - Elastic modes (lattice vibrations)
 - Not very much like particles we know:
 - can occupy the same spot
 - aren’t conserved
 - Nevertheless, sort of like particles
 - Energy is quantized by occupancy n
What determines N?

- We also asked (Ch. 4):
 - How do waves get excited by τ in a volume L^3?
 - Cavity EM modes (blackbody radiation)
 - Elastic modes (lattice vibrations)
 - Not very much like particles we know:
 - can occupy the same spot
 - aren’t conserved
 - Nevertheless, sort of like particles
 - Energy is quantized by occupancy n
 - Can ”collide,” exchange $\hbar \omega$ with other "particles"
What determines N?

- Many more cases where particles *can* move

Figure: Atmospheric circulation map (NOAA website)
What determines N?

- Many more cases where particles *can* move

Figure: Atmospheric circulation map (NOAA website)

- Why do they (gas molecules) go where they go?
The chemical potential μ

Figure: Two regions
The chemical potential μ

What determines energy flow? T_1, T_2
The chemical potential μ

- What determines energy flow? T_1, T_2
- What determines particle flow?

Figure: Two regions
The chemical potential μ

Figure: Two regions

- What determines energy flow? T_1, T_2
- What determines particle flow?
- How about concentrations?

$$n_1 = \frac{N_1}{V_1} \quad n_2 = \frac{N_2}{V_2} \quad (1)$$
The chemical potential μ

- For const τ, V, proved before: F minimized, $\delta F \leq 0$
The chemical potential μ

- For const τ, V, proved before: F minimized, $\delta F \leq 0$

In the case of the two regions 1, 2 in thermal and diffusive equilibrium

$$F = F_1 + F_2$$ (2)
The chemical potential μ

- For const τ, V, proved before: F minimized, $\delta F \leq 0$

 In the case of the two regions 1, 2 in thermal and diffusive equilibrium

 $$F = F_1 + F_2$$ \hspace{1cm} (2)

- N is new variable. Expand $F = F(\tau, V, N)$:
The chemical potential μ

- For const τ, V, proved before: F minimized, $\delta F \leq 0$

 In the case of the two regions 1, 2 in thermal and diffusive equilibrium

 $$F = F_1 + F_2$$ \hspace{1cm} (2)

- N is new variable. Expand $F = F(\tau, V, N)$:

 $$dF = \left(\frac{\partial F}{\partial \tau} \right)_{V,N} d\tau + \left(\frac{\partial F}{\partial V} \right)_{\tau,N} dV + \left(\frac{\partial F}{\partial N} \right)_{\tau,V} dN$$ \hspace{1cm} (3)
The chemical potential μ

- For const τ, V, proved before: F minimized, $\delta F \leq 0$
 In the case of the two regions 1, 2 in thermal and diffusive equilibrium
 \[F = F_1 + F_2 \] (2)

- N is new variable. Expand $F = F(\tau, V, N)$:

 \[dF = \left(\frac{\partial F}{\partial \tau} \right)_{V,N} d\tau + \left(\frac{\partial F}{\partial V} \right)_{\tau,N} dV + \left(\frac{\partial F}{\partial N} \right)_{\tau,V} dN \] (3)

Constant $N = N_1 + N_2$, so $\delta N_1 = -\delta N_2$

 \[dF = \left(\frac{\partial F_1}{\partial N_1} \right)_{\tau,V_1} \delta N_1 - \left(\frac{\partial F_2}{\partial N_2} \right)_{\tau,V_2} \delta N_1 \] (4)
The chemical potential μ

- Define

$$\mu_{1,2} = \left(\frac{\partial F_{1,2}}{\partial N_{1,2}} \right)_{\tau, V_{1,2}}$$

(5)

Particle flow from 2 to 1 if $dF < 0$ for $\delta N_{1} > 0$

$$\left(\frac{\partial F_{1}}{\partial N_{1}} \right) \delta N_{1} - \left(\frac{\partial F_{2}}{\partial N_{2}} \right) \delta N_{1} < 0$$

(6)

Thus particle flow $2 \rightarrow 1$ if $\mu_{1} < \mu_{2}$

(7)

Particles flow towards regions of low chemical potential

Diffusive equilibrium: $\mu(z)$ is constant
The chemical potential μ

- Define

$$\mu_{1,2} = \left(\frac{\partial F_{1,2}}{\partial N_{1,2}} \right)_{\tau, V_{1,2}}$$ \hspace{1cm} (5)

- Particle flow from 2 to 1 if $dF < 0$ for $\delta N_1 > 0$

$$\left(\frac{\partial F_1}{\partial N_1} \right)_{\tau, V_1} \delta N_1 - \left(\frac{\partial F_2}{\partial N_2} \right)_{\tau, V_2} \delta N_1 < 0$$ \hspace{1cm} (6)
The chemical potential μ

- Define

$$\mu_{1,2} = \left(\frac{\partial F_{1,2}}{\partial N_{1,2}} \right)_{\tau, V_{1,2}}$$ \hspace{1cm} (5)

- Particle flow from 2 to 1 if $dF < 0$ for $\delta N_1 > 0$

$$\left(\frac{\partial F_1}{\partial N_1} \right)_{\tau, V_1} \delta N_1 - \left(\frac{\partial F_2}{\partial N_2} \right)_{\tau, V_2} \delta N_1 < 0$$ \hspace{1cm} (6)

- Thus particle flow $2 \rightarrow 1$ if

$$\mu_1 < \mu_2$$ \hspace{1cm} (7)
The chemical potential μ

- Define
 \[\mu_{1,2} = \left(\frac{\partial F_{1,2}}{\partial N_{1,2}} \right)_{\tau, V_{1,2}} \]

- Particle flow from 2 to 1 if $dF < 0$ for $\delta N_1 > 0$
 \[\left(\frac{\partial F_1}{\partial N_1} \right)_{\tau, V_1} \delta N_1 - \left(\frac{\partial F_2}{\partial N_2} \right)_{\tau, V_2} \delta N_1 < 0 \]

- Thus particle flow $2 \rightarrow 1$ if
 \[\mu_1 < \mu_2 \]

- Particles flow towards regions of low chemical potential
The chemical potential μ

- Define

$$\mu_{1,2} = \left(\frac{\partial F_{1,2}}{\partial N_{1,2}} \right)_{\tau, V_{1,2}}$$ \hspace{1cm} (5)

- Particle flow from 2 to 1 if $dF < 0$ for $\delta N_1 > 0$

$$\left(\frac{\partial F_1}{\partial N_1} \right)_{\tau, V_1} \delta N_1 - \left(\frac{\partial F_2}{\partial N_2} \right)_{\tau, V_2} \delta N_1 < 0$$ \hspace{1cm} (6)

- Thus particle flow 2 \rightarrow 1 if

$$\mu_1 < \mu_2$$ \hspace{1cm} (7)

- Particles flow towards regions of low chemical potential

- Diffusive equilibrium: $\mu(z)$ is constant
Internal chemical potential μ

- Example: ideal gas

$$Z = \frac{N!}{n^N}$$

$$F = -\tau \ln Z$$

$$F = \tau \left(\ln N - N \ln n + \frac{N!}{n^N} \right)$$

$$\mu = \left(\frac{\partial F}{\partial N} \right)_{\tau, V}$$
Internal chemical potential μ

- Example: ideal gas

$$Z = \frac{1}{N!} (nQ V)^N$$ \hspace{1cm} (8)
Internal chemical potential μ

- Example: ideal gas

\[
Z = \frac{1}{N!} (n_Q V)^N
\]

\[
F = -\tau \ln Z
\]

\[
\mu = \left(\frac{\partial F}{\partial N}\right)_{\tau, V},
\]

\[
\mu = \left(\frac{\partial F}{\partial n_Q V}\right)_{\tau, N}
\]
Internal chemical potential μ

- Example: ideal gas

$$Z = \frac{1}{N!} (n_Q V)^N$$ \hspace{1cm} (8)

$$F = -\tau \ln Z$$ \hspace{1cm} (9)

$$F = \tau (\ln N! - N \ln n_Q V)$$ \hspace{1cm} (10)
Internal chemical potential μ

- Example: ideal gas

$$Z = \frac{1}{N!} (n_Q V)^N$$ \hspace{1cm} (8)

$$F = -\tau \ln Z$$ \hspace{1cm} (9)

$$F = \tau (\ln N! - N \ln n_Q V)$$ \hspace{1cm} (10)

$$F = \tau (N \ln N - N - N \ln n_Q V)$$ \hspace{1cm} (11)
Internal chemical potential μ

- Example: ideal gas

\[Z = \frac{1}{N!} (nQ \, V)^N \] \hfill (8)

\[F = -\tau \ln Z \] \hfill (9)

\[F = \tau \left(\ln N! - N \ln nQ \, V \right) \] \hfill (10)

\[F = \tau \left(N \ln N - N - N \ln nQ \, V \right) \] \hfill (11)

\[\mu = \left(\frac{\partial F}{\partial N} \right)_{\tau, V} = \tau \left(\ln N + 1 - 1 - \ln nQ \, V \right) \] \hfill (12)
Internal chemical potential μ

- Example: ideal gas

$$Z = \frac{1}{N!} (n_Q V)^N$$ \hspace{1cm} (8)

$$F = -\tau \ln Z$$ \hspace{1cm} (9)

$$F = \tau (\ln N! - N \ln n_Q V)$$ \hspace{1cm} (10)

$$F = \tau (N \ln N - N - N \ln n_Q V)$$ \hspace{1cm} (11)

$$\mu = \left(\frac{\partial F}{\partial N} \right)_{\tau, V} = \tau (\ln N + 1 - 1 - \ln n_Q V)$$ \hspace{1cm} (12)

$$\mu = \left(\frac{\partial F}{\partial N} \right)_{\tau, V} = \tau \ln \left(\frac{n}{n_Q} \right)$$ \hspace{1cm} (13)
External chemical potential μ

- Just found, for particle type i, ”internal” potential

$$\mu_{i}^{\text{int}} = \tau \ln \left(\frac{n_i}{n_{Q,i}} \right)$$ \hspace{1cm} (14)

(due to entropy of numbers)
External chemical potential μ

- Just found, for particle type i, "internal" potential

$$\mu_{i}^{\text{int}} = \tau \ln \left(\frac{n_i}{n_{Q,i}} \right)$$ \hspace{1cm} (14)

(due to entropy of numbers)

- Says particle flow $2 \rightarrow 1$ if $\mu_1 < \mu_2 : n_1 < n_2$
External chemical potential μ

- Just found, for particle type i, ”internal” potential
 \[\mu_{i}^{\text{int}} = \tau \ln \left(\frac{n_i}{n_{Q,i}} \right) \]
 (due to entropy of numbers)
- Says particle flow $2 \rightarrow 1$ if $\mu_1 < \mu_2 : n_1 < n_2$
- Not the whole story. Consider that we add to particle U an externally imposed term U'
External chemical potential μ

- Just found, for particle type i, "internal" potential

$$\mu_{i}^{\text{int}} = \tau \ln \left(\frac{n_i}{n_{Q,i}} \right)$$ \hspace{1cm} (14)

(due to entropy of numbers)

- Says particle flow $2 \rightarrow 1$ if $\mu_1 < \mu_2 : n_1 < n_2$

- Not the whole story. Consider that we add to particle U an externally imposed term U'

$$U = U' + U_0$$ \hspace{1cm} (15)
External chemical potential \(\mu \)

- Just found, for particle type \(i \), "internal" potential
 \[
 \mu_{i}^{\text{int}} = \tau \ln \left(\frac{n_i}{n_{Q,i}} \right) \tag{14}
 \]
 (due to entropy of numbers)
- Says particle flow \(2 \to 1 \) if \(\mu_1 < \mu_2 : n_1 < n_2 \)
- Not the whole story. Consider that we add to particle \(U \) an \textit{externally imposed} term \(U' \)

\[
U = U' + U_0 \tag{15}
\]

\[
\mu_{\text{ext}} \equiv U' \tag{16}
\]
External chemical potential μ

- Just found, for particle type i, "internal" potential

 \[\mu_{i}^{\text{int}} = \tau \ln \left(\frac{n_i}{n_{Q,i}} \right) \]
 (due to entropy of numbers)

- Says particle flow $2 \rightarrow 1$ if $\mu_1 < \mu_2 : n_1 < n_2$

- Not the whole story. Consider that we add to particle U an externally imposed term U'

 \[U = U' + U_0 \]
 (15)

 \[\mu_{\text{ext}} \equiv U' \]
 (16)

- Gravity, $U' = mgz$
External chemical potential μ

- Just found, for particle type i, "internal" potential
 $\mu_{i}^{\text{int}} = \tau \ln \left(\frac{n_i}{n_{Q,i}} \right)$ (14)
 (due to entropy of numbers)
- Says particle flow $2 \rightarrow 1$ if $\mu_1 < \mu_2 : n_1 < n_2$
- Not the whole story. Consider that we add to particle U an externally imposed term U'
 $U = U' + U_0$ (15)
 $\mu_{\text{ext}} \equiv U'$ (16)

- Gravity, $U' = mgz$
- Magnetic field, $U' = \mu \cdot B$, $B = B(z)$
External chemical potential μ

Now, at equilibrium:

$$\mu_i^{int} + \mu_i^{ext} = c$$ \hspace{1cm} (17)

where c is a constant.
External chemical potential μ

- Now, at equilibrium:

$$\mu_i^{int} + \mu_i^{ext} = c$$ \hspace{1cm} (17)

where c is a constant.

Now we can calculate some interesting things!
External chemical potential μ

- Now, at equilibrium:

$$\mu_{i}^{\text{int}} + \mu_{i}^{\text{ext}} = c$$ \hspace{1cm} (17)

where c is a constant.

Now we can calculate some interesting things!

- Consider gravity acting on gas (const T!)

$$\tau \ln \left(\frac{n}{n_{Q}} \right) + m g z = c$$ \hspace{1cm} (18)
External chemical potential μ

- Now, at equilibrium:

\[\mu_i^{\text{int}} + \mu_i^{\text{ext}} = c \]

where c is a constant.

Now we can calculate some interesting things!

- Consider gravity acting on gas (const T!)

\[\tau \ln \left(\frac{n}{nQ} \right) + mgz = c \]

\[PV = n\tau \]
External chemical potential μ

- Now, at equilibrium:

$$\mu_i^{\text{int}} + \mu_i^{\text{ext}} = c$$ \hfill (17)

where c is a constant.

Now we can calculate some interesting things!

- Consider gravity acting on gas (const T!)

$$\tau \ln \left(\frac{n}{n_Q} \right) + m g z = c$$ \hfill (18)

$$P V = n \tau$$ \hfill (19)

$$\tau \ln \left(\frac{P V}{\tau n_Q} \right) + m g z = c$$ \hfill (20)
Gravitational potential: atmosphere

\[\tau \ln \left(\frac{P V}{\tau nQ} \right) + m g z = c \] (21)

Gravitational potential: atmosphere

Open Systems
Definition
The chemical potential \(\mu \)
Internal \(\mu \)
External \(\mu \)
Gravity
Magnetic
Gibbs factor and Gibbs sum
Gravitational potential: atmosphere

\[\tau \ln \left(\frac{P V}{\tau nQ} \right) + mgz = c \] \hspace{1cm} (21)

\[\frac{P V}{\tau nQ} = \exp \left(\frac{c}{\tau} - \frac{mgz}{\tau} \right) \] \hspace{1cm} (22)
Gravitational potential: atmosphere

\[\tau \ln \left(\frac{P \, V}{\tau \, n_Q} \right) + m \, g \, z = c \] \hspace{1cm} (21)

\[\frac{P \, V}{\tau \, n_Q} = \exp \left(\frac{c}{T} - \frac{m \, g \, z}{\tau} \right) \] \hspace{1cm} (22)

\[P = \frac{\tau \, n_Q}{V} \exp \left(\frac{c}{T} - \frac{m \, g \, z}{\tau} \right) \] \hspace{1cm} (23)
Gravitational potential: atmosphere

\[\tau \ln \left(\frac{P V}{\tau n Q} \right) + m g z = c \] \hspace{1cm} (21)

\[\frac{P V}{\tau n Q} = \exp \left(\frac{c}{\tau} - \frac{m g z}{\tau} \right) \] \hspace{1cm} (22)

\[P = \frac{\tau n Q}{V} \exp \left(\frac{c}{\tau} - \frac{m g z}{\tau} \right) \] \hspace{1cm} (23)

\[P = P_0 \exp -\frac{z}{\lambda} \quad \lambda \equiv \frac{\tau}{m g} \] \hspace{1cm} (24)
Gravitational potential: atmosphere

\[
\tau \ln \left(\frac{P V}{\tau nQ} \right) + mgz = c \quad (21)
\]

\[
\frac{P V}{\tau nQ} = \exp \left(\frac{c}{\tau} - \frac{mgz}{\tau} \right) \quad (22)
\]

\[
P = \frac{\tau nQ}{V} \exp \left(\frac{c}{\tau} - \frac{mgz}{\tau} \right) \quad (23)
\]

\[
P = P_0 \exp \left(-\frac{Z}{\lambda} \right) \quad \lambda \equiv \frac{\tau}{mg} \quad (24)
\]

- \(\lambda \) tells how rapidly the pressure drops with elevation.
Gravitational potential: atmosphere

- Most relevant for us: consider O_2 molecule
Gravitational potential: atmosphere

- *Most relevant for us:* consider O$_2$ molecule
 32 g/mol, N$_A$ at/mol
Gravitational potential: atmosphere

- *Most relevant for us:* consider O₂ molecule
 32 g/mol, Nₐ at/mol
 \[m_{O_2} \cdot g = \frac{32}{6.022} \times 10^{-26} \text{kg/at} \cdot 9.8 \text{ m s}^{-2} = N \]
Gravitational potential: atmosphere

- **Most relevant for us:** consider O\(_2\) molecule
 - 32 g/mol, N\(_A\) at/mol
 - \(m_{O_2} \cdot g = \frac{32}{6.022} \times 10^{-26} \text{kg/atom} \times 9.8 \text{ m s}^{-2} = 25.86 \text{ meV} \approx 25.86 \text{ meV (1.6} \times 10^{-22} \text{ J/meV)}\)
Gravitational potential: atmosphere

- **Most relevant for us:** consider O$_2$ molecule

 32 g/mol, N$_A$ at/mol

 \[m_{O_2} \cdot g = \frac{32}{6.022} \times 10^{-26} \text{kg/at} \cdot 9.8 \text{ m s}^{-2} = \text{N} \]

 \[\tau = 25.86 \text{ meV} = 25.86 \text{ meV} \left(1.6 \times 10^{-22} \text{ J/meV}\right) \]

 \[\lambda = 40 \times 10^{-22} \text{ N m} / 50 \times 10^{-26} \text{ N} \sim 8 \text{ km} \]
Gravitational potential: atmosphere

- **Most relevant for us:** consider O_2 molecule
 32 g/mol, N_A at/mol

 \[
 m_{O_2} \cdot g = \frac{32}{6.022 \times 10^{-26}} \text{kg/at} \times 9.8 \text{ m/s}^2 = 25.86 \text{ meV (1.6 \times 10^{-22} J/meV)}
 \]

- **In Nederland, CO, your brain would be deprived of O_2 by factor ~ 0.73 (27% less)**
Gravitational potential: atmosphere

- **Most relevant for us:** consider O_2 molecule

 32 g/mol, N_A at/mol

 \[m_{O_2} \cdot g = \frac{32}{6.022 \times 10^{-26} \text{kg/at}} \times 9.8 \text{ m s}^{-2} = N \]

 \[\tau = 25.86 \text{ meV} = 25.86 \text{ meV} (1.6 \times 10^{-22} \text{ J/meV}) \]

 \[\lambda = 40 \times 10^{-22} \text{ N m} / 50 \times 10^{-26} \text{ N} \sim 8 \text{ km} \]

- In Nederland, CO, your brain would be deprived of O_2 by factor ~ 0.73 (27% less)

- On top of Everest (8 km), by factor $1/e$ (0.37!)
Magnetic potential

- Remember: no magnetic monopoles $\nabla \cdot \mathbf{B} = 0$
Magnetic potential

- Remember: no magnetic monopoles $\nabla \cdot \mathbf{B} = 0$
- On a dipole, only a torque (no force) in \mathbf{B} const
Magnetic potential

- Remember: no magnetic monopoles $\nabla \cdot \mathbf{B} = 0$
- On a dipole, only a torque (no force) in \mathbf{B} const
- Need a field gradient to exert a force: $\mathbf{F} = \nabla (\mu \cdot \mathbf{B})$.
Magnetic potential

- Remember: no magnetic monopoles \(\nabla \cdot \mathbf{B} = 0 \)
- On a dipole, only a torque (no force) in \(\mathbf{B} \) const
- Need a field gradient to exert a force: \(\mathbf{F} = \nabla (\mu \cdot \mathbf{B}) \).
- Assume a field profile

\[
B(z) = \frac{B_0}{2} \left(\frac{2z}{L} \right)
\] (25)
Magnetic potential

- Remember: no magnetic monopoles $\nabla \cdot \mathbf{B} = 0$
- On a dipole, only a torque (no force) in \mathbf{B} const
- Need a field gradient to exert a force: $\mathbf{F} = \nabla (\mu \cdot \mathbf{B})$.
- Assume a field profile

\[
B(z) = \frac{B_0}{2} \left(\frac{2z}{L} \right) \tag{25}
\]

- Thus for spin 1/2 particles (He\(_3\))

\[
\mu_{\text{ext}} = \mu \cdot \mathbf{B} \tag{26}
\]

\[
\mu_{\mp,\text{ext}} = \pm \mu_B B_0 \frac{z}{L} \tag{27}
\]
Magnetic potential

- Remember: no magnetic monopoles \(\nabla \cdot \mathbf{B} = 0 \)
- On a dipole, only a torque (no force) in \(\mathbf{B} \) const
- Need a field gradient to exert a force: \(\mathbf{F} = \nabla (\mu \cdot \mathbf{B}) \).
- Assume a field profile

\[
B(z) = \frac{B_0}{2} \left(\frac{2z}{L} \right)
\]

(25)

- Thus for spin 1/2 particles (He\(_3\))

\[
\mu_{\text{ext}} = \mu \cdot \mathbf{B}
\]

(26)

\[
\mu_{\pm, \text{ext}} = \pm \mu_B B_0 \frac{z}{L}
\]

(27)

\[
n^\uparrow = n_0 \exp \frac{z}{\lambda} \quad n^\downarrow = n_0 \exp -\frac{z}{\lambda} \quad \lambda \equiv \frac{\tau L}{\mu_B B_0}
\]

(28)
Magnetic potential

\[\mu_B \cdot 1 \, \text{T} \sim 0.66 \, \text{K}; \text{ for a high field gradient of } L = 1 \, \text{mm}, \]
\[\lambda = 45 \, \text{cm} \text{ (not much separation)} \]
Gibbs factor / Gibbs sum

- Again, two systems: S

S_1 S_2

Figure: Isolated systems S_1, S_2
Gibbs factor / Gibbs sum

- Again, two systems: \(S \)

\[S_1 \quad S_2 \]

Figure: Isolated systems \(S_1, S_2 \)

- Energies \(U_1, U_2 \) fixed.
Gibbs factor / Gibbs sum

- Again, two systems: S
- Energies U_1, U_2 fixed.
- Particles: N_1, N_2 fixed

Figure: Isolated systems S_1, S_2
Open Systems

Definition

The chemical potential μ

Internal μ

External μ

Gravity

Magnetic

Gibbs factor and Gibbs sum

Again, two systems: S

S_1

S_2

Figure: Isolated systems S_1, S_2

- Energies U_1, U_2 fixed.
- Particles: N_1, N_2 fixed
- What happens?
Again, two systems: S

$S_1 + S_2$

Figure: Joined system $S = S_1 + S_2$
Gibbs factor / Gibbs sum

- Again, two systems: S

\[S_1 \quad S_2 \]

Figure: Joined system $S = S_1 + S_2$

- Can exchange energy: $U = U_1 + U_2$ fixed.
Gibbs factor / Gibbs sum

- Again, two systems: S

\[
S_1 \quad S_2
\]

Figure: Joined system $S = S_1 + S_2$

- Can exchange energy: $U = U_1 + U_2$ fixed.
- **Now can** exchange particles: $N = N_1 + N_2$ fixed, N_1, $N_2 = N - N_1$ variable.
Gibbs factor / Gibbs sum

- Again, two systems: S

 \[
 S = S_1 + S_2
 \]

- Can exchange energy: $U = U_1 + U_2$ fixed.
- **Now can** exchange particles: $N = N_1 + N_2$ fixed, $N_1, N_2 = N - N_1$ variable.
- What happens?

Figure: Joined system $S = S_1 + S_2$
Known / unknown

- We know direction of energy flow (from high T to low T)
Known / unknown

- We know direction of energy flow (from high T to low T)
- We know direction of particle flow (from high μ to low μ)
Known / unknown

- We know direction of energy flow (from high T to low T)
- We know direction of particle flow (from high μ to low μ)
- Don’t know: relative probability of large N compared with small N
Two regions:

- **Universe**
 - $U = U_o$
 - $N = N_o$

- **Reservoir R**
 - $U = U_o - \varepsilon$
 - $N = N_o - N$

Figure: Universe: tiny system, big reservoir.
Dividing universe (again)

- **Two regions:**
 - **Universe**
 - $U = U_0$
 - $N = N_0$
 - **Reservoir R**
 - $U = U_0 - \varepsilon$
 - $N = N_0 - N$

System S

Figure: Universe: tiny system, big reservoir.
Dividing universe (again)

- **Two regions:**

 ![Diagram showing Universe and Reservoir](image)

 - **Universe**
 - $U = U_o$
 - $N = N_o$

 - **Reservoir R**
 - $U = U_o - \varepsilon$
 - $N = N_o - N$

Figure: Universe: tiny system, big reservoir.

- **System S**
- **Reservoir R**
Dividing universe (again)

- **System**

Open Systems
Definition
The chemical potential \(\mu \)
Internal \(\mu \)
External \(\mu \)
Gravity
Magnetic
Gibbs factor and Gibbs sum
Dividing universe (again)

- **System**

 Interested in understanding the system.
Dividing universe (again)

- **System S**

 Interested in understanding the system.

 Energy: $U_S = \epsilon$; Particles: N
Dividing universe (again)

- **System S**
 Interested in understanding the system.
 Energy: $U_S = \epsilon$; Particles: N

- **Reservoir R**
Dividing universe (again)

- **System** S

 Interested in understanding the system.

 Energy: $U_S = \epsilon$; Particles: N

- **Reservoir** R

 All parts of the universe which are not the system.
Dividing universe (again)

- **System** \mathcal{S}
 Interested in understanding the system.
 Energy: $U_\mathcal{S} = \epsilon$; Particles: N

- **Reservoir** \mathcal{R}
 All parts of the universe which are not the system.
 Energy: $U_\mathcal{R}$.
Dividing universe (again)

- **System** \mathbb{S}
 - Interested in understanding the system.
 - Energy: $U_\mathbb{S} = \epsilon$; Particles: N

- **Reservoir** \mathbb{R}
 - All parts of the universe which are not the system.
 - Energy: $U_\mathbb{R}$.

- Total energy $U_0 = U_\mathbb{S} + U_\mathbb{R}$
Dividing universe (again)

- **System** S
 Interested in understanding the system.

 Energy: $U_S = \epsilon$; Particles: N

- **Reservoir** R
 All parts of the universe which are not the system.

 Energy: U_R.

- Total energy $U_0 = U_S + U_R$

 $\Rightarrow U_R = U_0 - \epsilon$, $N_R = N_0 - N$
Evaluating multiplicity

- multiplicity of the whole universe

\[g_{\text{tot}} = g^S g^R \] (29)
Evaluating multiplicity

- multiplicity of the whole universe

\[g_{\text{tot}} = g^S g^R \] \hspace{1cm} (29)

- Taking \$ as a single state:

\[g^S = 1. \]
Evaluating multiplicity

- multiplicity of the whole universe

\[g_{tot} = g^S g^R \] \hfill (29)

- Taking S as a single state:

\[g^S = 1. \]

- Total multiplicity is multiplicity of reservoir R

\[g_{tot} = g^R \] \hfill (30)
Differential relation

- For entropy, expand

\[
d\sigma = \left(\frac{\partial \sigma}{\partial U} \right)_{V,N} \, dU + \left(\frac{\partial \sigma}{\partial V} \right)_{U,N} \, dV + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} \, dN
\]

(31)
Differential relation

- For entropy, expand

\[
d\sigma = \left(\frac{\partial \sigma}{\partial U} \right)_{V,N} dU + \left(\frac{\partial \sigma}{\partial V} \right)_{U,N} dV + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} dN
\]

(31)

- At constant volume, constant entropy

\[
0 = \frac{1}{\tau} dU + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} dN
\]

(32)
Differential relation

- For entropy, expand

\[
d\sigma = \left(\frac{\partial \sigma}{\partial U} \right)_{V,N} dU + \left(\frac{\partial \sigma}{\partial V} \right)_{U,N} dV + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} dN
\]

(31)

- At constant volume, constant entropy

\[
0 = \frac{1}{\tau} dU + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} dN
\]

(32)

- Thus

\[
\left(\frac{\partial \sigma}{\partial N} \right)_{V,N} = -\frac{1}{\tau} \left(\frac{\partial U}{\partial N} \right)_{\sigma,V}
\]

(33)
Differential relation

- For entropy, expand

\[
d\sigma = \left(\frac{\partial \sigma}{\partial U} \right)_{V,N} dU + \left(\frac{\partial \sigma}{\partial V} \right)_{U,N} dV + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} dN
\]

(31)

- At constant volume, constant entropy

\[
0 = \frac{1}{\tau} dU + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} dN
\]

(32)

- Thus

\[
\left(\frac{\partial \sigma}{\partial N} \right)_{V,N} = -\frac{1}{\tau} \left(\frac{\partial U}{\partial N} \right)_{\sigma,V}
\]

(33)

\[
\left(\frac{\partial \sigma}{\partial N} \right)_{V,N} = -\frac{\mu}{\tau}
\]

(34)
Entropy of reservoir

- Taylor-expand the reservoir entropy

\[
\sigma_R = \sigma_0 + \left(\frac{\partial \sigma}{\partial U} \right)_{V,N} (U_0 - \epsilon) + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} (N_0 - N) \tag{35}
\]
Entropy of reservoir

- Taylor-expand the reservoir entropy

\[\sigma_R = \sigma_0 + \left(\frac{\partial \sigma}{\partial U} \right)_{V,N} (U_0 - \epsilon) + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} (N_0 - N) \] (35)

\[\sigma_R = \sigma_0 + \frac{1}{\tau} (U_0 - \epsilon) \frac{-\mu}{\tau} (N_0 - N) \] (36)
Open Systems

Definition
The chemical potential μ
Internal μ
External μ
Gravity
Magnetic
Gibbs factor and Gibbs sum

Entropy of reservoir

- Taylor-expand the reservoir entropy

$$\sigma_R = \sigma_0 + \left(\frac{\partial \sigma}{\partial U} \right)_{V,N} (U_0 - \epsilon) + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} (N_0 - N) \quad (35)$$

$$\sigma_R = \sigma_0 + \frac{1}{\tau} (U_0 - \epsilon) \frac{-\mu}{\tau} (N_0 - N) \quad (36)$$

- So,

$$\frac{P(N_1, E_1)}{P(N_2, E_2)} = \frac{\exp(\sigma_R(N_1, E_1))}{\exp(\sigma_R(N_2, E_2))} \quad (37)$$
Entropy of reservoir

- Taylor-expand the reservoir entropy

\[\sigma_R = \sigma_0 + \left(\frac{\partial \sigma}{\partial U} \right)_{V,N} (U_0 - \epsilon) + \left(\frac{\partial \sigma}{\partial N} \right)_{V,N} (N_0 - N) \]

(35)

\[\sigma_R = \sigma_0 + \frac{1}{\tau} (U_0 - \epsilon) - \frac{\mu}{\tau} (N_0 - N) \]

(36)

- So,

\[\frac{P(N_1, E_1)}{P(N_2, E_2)} = \frac{\exp(\sigma_R(N_1, E_1))}{\exp(\sigma_R(N_2, E_2))} \]

(37)

\[\frac{P(N_1, E_1)}{P(N_2, E_2)} = \exp \left[\frac{E_2 - E_1}{\tau} - \frac{\mu}{\tau} (N_2 - N_1) \right] \]

(38)
For reference, take $N_2 = 0, E_2 = 0$

\[P(N, E) = \exp \left(\frac{N\mu - E}{\tau} \right) \] (39)
Gibbs factor and Gibbs sum

- For reference, take $N_2 = 0, E_2 = 0$

\[
P(N, E) = \exp \left(\frac{N\mu - E}{\tau} \right)
\]

(39)

- Gibbs factor!
Gibbs factor and Gibbs sum

- For reference, take $N_2 = 0$, $E_2 = 0$

$$P(N, E) = \exp \left(\frac{N\mu - E}{\tau} \right)$$ \hspace{1cm} (39)

- Gibbs factor!

- Plays same role as Boltzmann factor for systems which can exchange particles.
Gibbs factor and Gibbs sum

- For reference, take \(N_2 = 0, \ E_2 = 0 \)

\[
P(N, E) = \exp\left(\frac{N\mu - E}{\tau}\right)
\]

(39)

- Gibbs factor!
- Plays same role as Boltzmann factor for systems which can exchange particles.
- Analogue of partition function \(Z \): Gibbs sum

\[
\zeta = \sum_{N=0}^{\infty} \sum_{s(N)} \exp\left(\frac{N\mu - \epsilon_s}{\tau}\right)
\]

(40)
Gibbs factor and Gibbs sum

- For reference, take $N_2 = 0$, $E_2 = 0$

\[P(N, E) = \exp \left(\frac{N\mu - E}{\tau} \right) \] \hspace{1cm} (39)

- Gibbs factor!

- Plays same role as Boltzmann factor for systems which can exchange particles.

- Analogue of partition function Z: Gibbs sum

\[\zeta = \sum_{N=0}^{\infty} \sum_{s(N)} \exp \left[(N\mu - \epsilon_s)/\tau \right] \] \hspace{1cm} (40)

a.k.a. grand canonical sum
Number of particles

- Not hard to verify (like for U)

\[
\langle N \rangle = \tau \frac{\partial \ln \zeta}{\partial \mu}
\]

(41)